Cho một tập hợp khác rỗng \(D \subset R\)
Hàm số f xác định trên D là một quy tắc đặt tương ứng mỗi sỗ thuộc D với một và chỉ một số, kí hiệu là f(x), số f(x) được gọi là giá trị của hàm số f tại x.
Tập D gọi là tập xác định (hay miền xác định), x gọi là biến số hay đối số của hàm số f.
Nếu không có giải thích gì thêm thì tập xác định của hàm số y=f(x) là tập hợp tất cả các số thực x sao cho giá trị của biểu thức f(x) được xác định.
Cho hàm số f xác định trên K.
\(\forall {x_1},{x_2} \in K,{x_1} < {x_2} \Rightarrow f({x_1}) < f({x_2});\)
\(\forall {x_1},{x_2} \in K,{x_1} < {x_2} \Rightarrow f({x_1}) > f({x_2});\)
Ta có:
Chú ý:
Nếu \(f({x_1}) =f({x_2})\) với mọi \({x_1},{x_2} \in K\) tức là f(x)=c với mọi \({x} \in K\)( c là hằng số) thì ta có hàm số không đổi (còn gọi là hàm số hằng) trên K.
Khảo sát sự biến thiên của hàm số là xét xem hàm số đồng biến, nghịch biến hay không đổi trên các khoảng (nửa khoảng hay đoạn) nào trong tập xác định của nó.
Hàm số f đồng biến trên K khi và chỉ khi
\(\forall {x_1},{x_2} \in K,{x_1} \ne {x_2},\frac{{f({x_2}) - f({x_1})}}{{{x_2} - {x_1}}} > 0\).
Hàm số f nghịch biến trên K khi và chỉ khi
\(\forall {x_1},{x_2} \in K,{x_1} \ne {x_2},\frac{{f({x_2}) - f({x_1})}}{{{x_2} - {x_1}}} < 0\)
Cho hàm số y=f(x) với tập xác định D:
Định lí:
Trong mặt phẳng tọa độ Oxy, cho đồ thị (G)của hàm số y=f(x); p và q là hai số dương tùy ý. Khi đó:
Tìm tập xác định của hàm số:
a) \(y=\frac{{x + \sqrt {4 - {x^2}} }}{{{x^2} - 5x + 6}}\)
b) \(y=\frac{{{x^3} + 6x}}{{({x^2} - 4)\sqrt {x - 5} }}\)
a)
\(y=\frac{{x + \sqrt {4 - {x^2}} }}{{{x^2} - 5x + 6}}\)
Hàm số được xác định khi:
\( \left\{ {\begin{array}{*{20}{c}} {4 - {x^2} \ge 0}\\ {{x^2} - 5x + 6 \ne 0} \end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}} { - 2 \le x \le 2}\\ {\left\{ {\begin{array}{*{20}{c}} {x \ne 2}\\ {x \ne 3} \end{array}} \right.} \end{array}} \right.\)
Vậy tập xác định của hàm số là D=[-2;2)
b)
\(y=\frac{{{x^3} + 6x}}{{({x^2} - 4)\sqrt {x - 5} }}\)
Hàm số được xác định khi:
\(\left\{ {\begin{array}{*{20}{c}} {{x^2} - 4 \ne 0}\\ {x - 5 \ge 0} \end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}} {x \ne \pm 2}\\ {x \ge 5} \end{array}} \right.\)
Vậy tập xác định của hàm số là \(D = {\rm{[}}5; + \infty )\)
Xét tính chẵn lẻ của hàm số sau:
a) \(f(x)={x^3} + 2{x^2} + 1\)
b) \(f(x)={x^4} - 2{x^2} + 1996\)
c) \(f(x)={x^3} - 6x\)
a) TXĐ: \(D = \mathbb{R}\)
\(\forall x \in D \Rightarrow - x \in D\)
Ta có \(f( - x) = {( - x)^3} + 2{( - x)^2} + 1 = - {x^3} + 2{x^2} + 1 \ne f(x) \ne f( - x)\)
Vậy hàm số không chẵn không lẻ.
b) TXĐ: \(D = \mathbb{R}\)
\(\forall x \in D \Rightarrow - x \in D\)
Ta có \(f( - x) = {( - x)^4} - 2{( - x)^2} + 1996 = {x^4} - 2{x^2} + 1996 = f(x)\)
Vậy hàm số đã cho là hàm chẵn.
c) TXĐ: \(D = \mathbb{R}\)
\(\forall x \in D \Rightarrow - x \in D\)
Ta có \(f( - x) = {( - x)^3} - 6( - x) = - {x^3} + 6x = - f(x)\)
vậy hàm số đã cho là hàm lẻ.
Hàm số là một khái niệm mà chúng ta đã làm quen ở cấp THCS. Bài giảng này sẽ giúp các em hiểu rõ hơn về các khái niệm liên quan đến hàm số như tập xác định, tính chẵn lẻ, sự biến thiên,...
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 10 Chương 2 Bài 1 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Câu 4- Câu 10: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 10 Chương 2 Bài 1 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Đại số 10 Cơ bản và Nâng cao.
Bài tập 5 trang 45 SGK Toán 10 NC
Bài tập 6 trang 45 SGK Toán 10 NC
Bài tập 7 trang 45 SGK Toán 10 NC
Bài tập 8 trang 45 SGK Toán 10 NC
Bài tập 9 trang 46 SGK Toán 10 NC
Bài tập 10 trang 46 SGK Toán 10 NC
Bài tập 11 trang 46 SGK Toán 10 NC
Bài tập 12 trang 46 SGK Toán 10 NC
Bài tập 13 trang 46 SGK Toán 10 NC
Bài tập 14 trang 47 SGK Toán 10 NC
Bài tập 15 trang 47 SBT Toán 10 NC
Bài tập 16 trang 47 SBT Toán 10 NC
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Copyright © 2021 HOCTAP247